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Foreword
We are pleased to introduce our recent work, Escaping Local Minima Provably in
Non-convex Matrix Sensing: A Deterministic Framework via Simulated Lifting.

Low-rank matrix sensing is a fundamental problem whose optimization landscape
typically contains numerous spurious local minima, making it difficult for
gradient-based optimizers to converge to the global optimum.To address this
challenge, we designed a mathematical framework to project over-parameterized
escape directions onto the original parameter space to guarantee a strict decrease of
objective value from existing local minima. To the best of our knowledge, this
represents the first deterministic framework that could escape spurious local minima
with guarantee, especially without using random perturbations or heuristic estimates.
Furthermore, we believe this framework has non-trivial implications for nonconvex
optimization beyond matrix sensing, by showcasing how simulated
over-parameterization can be leveraged to tame challenging optimization landscapes.

The full paper is available on arXiv:http://arxiv.org/abs/2602.05887.

Module 1: Introduction — The NP-hard Reality of Non-convex Landscapes
Non-convex optimization is the engine behind modern machine learning, powering
everything from LLMs to autonomous driving and generative AI. However, these
problems are often NP-hard. The primary culprit is the complex loss landscape, which
is typically riddled with geometric irregularities: saddle points, extended flat regions,
and, most critically, spurious local minima.

From a dynamical systems perspective, optimization can be viewed as a
continuous-time gradient flow. In this view, spurious solutions behave like stable
equilibria. Once an optimizer's trajectory enters the "attraction basin" of such a local
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minima, it is theoretically incapable of escaping when using reasonably small step
sizes. These stable but non-global equilibria severely hinder convergence to the true
global optimum, ultimately degrading the model's performance and generalization
capability.

Module 2: The Limitations of Current Strategies
Existing strategies for escaping spurious local minima generally fall into two broad
categories: probabilistic perturbation and rule-based adaptation. While both have
achieved some success, they often struggle to provide the reliability needed for
complex, large-scale problems.

I) Random Perturbations (Escape by Randomness): Methods like Perturbed Gradient
Descent (PGD) or Stochastic Gradient Langevin Dynamics (SGLD) inject noise to
destabilize stationary points. However, this noise often disrupts deterministic gradient
flow, leading to poor global convergence or a low success rate in a single run.
Crucially, most random methods only offer theoretical guarantees for escaping saddle
points, not true local minima.

II) Heuristics (Subjective Rules): Optimizers like Adam, Nesterov's accelerated
gradient, or ALTO use historical data or lookahead mechanisms to reshape the descent
trajectory. While empirically strong, these methods are typically not rooted in rigorous
theory and are highly sensitive to hyperparameters.



Recent studies suggest that over-parameterization — enlarging the parameter space
beyond the problem's intrinsic degrees of freedom — can fundamentally reshape the
loss landscape. By lifting a matrix problem into a higher-order tensor space, spurious
local minima can be converted into strict saddle points, which are much easier to
escape. However, explicit tensor lifting is computationally and memory-prohibitive in
large-scale settings, creating a gap between theoretical power and practical feasibility.

Module 3: Our Methodology: Simulated Oracle Direction (SOD)
To bridge the gap between theoretical over-parameterization and practical efficiency,
we propose the Simulated Oracle Direction (SOD) escape mechanism. Instead of
incurring the exponential cost of actually lifting variables into a high-dimensional
tensor space, SOD operates entirely within the original, low-dimensional parameter
space.

The Oracle from High Dimensions
The central insight is that over-parameterization reveals escape directions that exist in
high-dimensional space but remain invisible in the original domain. We treat these
hidden directions as an Oracle. By mathematically characterizing the landscape of the
over-parameterized space, we can identify directions that guarantee a strict decrease
in the objective function from an existing local minima.
Projecting Back to Reality
The challenge is that these oracle directions often form complex superpositions in the
lifted space. Our framework designs a deterministic method to project these
high-dimensional escape signals back onto the original parameter space. This allows
the optimizer to perform a deterministic jump — effectively simulating the benefits of
massive scaling while maintaining minimal computational overhead.

Module 4: Technical Deep Dive: EFS and TPGD



To turn the intuition of simulated lifting into a rigorous algorithm, we developed two
complementary mechanisms that handle different optimization regimes.

Single-step SOD
Our framework first addresses cases where a single, deterministic jump can escape the
attraction basin. We introduce the Escape Feasibility Score (EFS), a theoretical
metric used to certify when a valid descent direction exists in the original space. EFS
consists of two components:
I) Negative Curvature Margin (NCM): Quantifies the ratio between the negative
eigenvalue of the landscape and the smallest eigenvalue of the current solution.
II) Alignment-Induced Curvature (AIC): Characterizes the geometric alignment
between the "invisible" escape directions and the local curvature.

When EFS > 1, we can calculate a closed-form escape point X� that is guaranteed to
have a lower objective value and leave the attraction basin of the current local
minima .

Multi-step SOD
In more complex landscapes where EFS is low, a single step is insufficient. We
simulate a trajectory in the high-dimensional space using Truncated Projected
Gradient Descent (TPGD) . This process evolves within a specifically designed
subspace and yields a closed-form decomposition of the trajectory into three terms:
I) a-term: Represents the state at the current local minima in the matrix space.This
term makes sure the tensors along the TPGD trajectory can be compared to the
original local min easily.
II) b-term: The explicit escape direction identified in prior theoretical work.
III) c -term: Our principal contribution. This term encodes invisible escape
information that remains hidden in the low-dimensional matrix space. Through ℓ−th
order tensor lifting, this mechanism amplifies the latent signal via geometric
alignment to provide a meaningful descent direction.



Depending on which term dominates the trajectory, we identify two types of escape
points: the simpler �-type and the numerically more stable �-type.

Module 5: Proof in Performance: From Theory to Real-World
To validate the Simulated Oracle Direction (SOD) mechanism, we conducted
extensive numerical experiments focusing on challenging non-convex scenarios
where standard algorithms typically fail. These experiments demonstrate that our
framework reliably facilitates convergence to global optima while incurring minimal
computational cost.

I) Perturbed Matrix Completion (PMC)
We tested our framework on a challenging PMC problem characterized by many deep
local minima.

Starting from random initializations, traditional Gradient Descent (GD) and Stochastic
Gradient Descent (SGD) algorithms often become trapped inside attraction basins of
spurious solutions, whereas our SOD step enables a direct jump out of these basins,



landing near the ground-truth matrix �∗.
II) Real-World Matrix Sensing
In a case study using sensing matrices derived from a real physical system, we applied
the multi-step SOD escape mechanism.

The mechanism successfully identified the dominance of the �-term. After applying
the escape point X� computed via TPGD, the subsequent GD trajectory traveled a
non-negligible distance and converged precisely to the ground truth .

III) Success Rate
Our method maintains a clear advantage in success rate over vanilla GD across
diverse problem sizes (n = 40 to 80).

Module 6: Conclusion
The Simulated Oracle Direction (SOD) Escape represents a shift in how we approach
challenging non-convex landscapes. By capturing the escape geometry of
over-parameterized tensor spaces while operating entirely in the original matrix
domain, our framework provides a practical and deterministic route to avoid the traps



of spurious local minima.

Key takeaways from this work include:
I) Deterministic Escape: Unlike randomized or heuristic methods, SOD is a
mathematically grounded framework that guarantees a strict decrease in objective
value.
II) Computational Efficiency: By simulating the benefits of over-parameterization
without explicit lifting, SOD avoids the exponential memory and processing costs
typically associated with massive scaling.
III) Broad Implications: While demonstrated on matrix sensing, the
"simulated-lifting" principle offers a general strategy for taming complex optimization
landscapes across modern machine learning.

We hope this framework empowers researchers and practitioners to navigate
non-convex problems with greater theoretical confidence and performance.


